要 旨 --

ゴールデンビームデータを用いた新規リニアック臨床導入の経験

高松赤十字病院 放射線科部

山花 大典,藤原 直人,峯瀬 正高,安部 淳子,安部 一成,竹治 励

放射線療法に用いる直線加速器(以下,リニアック)を臨床導入するためには,リニ アックの受け渡し後 3~4ヶ月のコミッショニング期間が必要である.コミッショニング を安全かつ効率的に行う方法の一つに,ベンダーから提供されるゴールデンビームデータ (Golden Beam Data:以下,GBD)を用いる方法がある.我々は,当院に新規導入された リニアック(TrueBeam)のビームデータとしてGBDを用いてコミッショニングを行った. GBDと当院のビームデータ(以下,実測データ)の一致性を確認するために行った簡易比 較において,GBDと実測データの誤差は1%以内と良好に一致していた.

GBD を使用することによって、ビームデータ測定の時間を大幅に短縮することができ、 コミッショニングにおける人為的ミスを避け、安全にかつ短期間でリニアックの立ち上げを 行うことができた.

キーワード 放射線療法,直線加速器,コンピュータ支援放射線治療計画

1. はじめに

当院では、直線加速器(以下、リニアック)で ある Varian Medical Systems 社製 TrueBeam (以 下、TrueBeam)を新規導入し、2020年4月よ り臨床使用を開始している。リニアックを臨床導 入するためには、リニアックの受け渡し後3~ 4ヶ月の日数が必要である¹⁾.リニアックを臨床 導入するためのこの作業期間をコミッショニング という.一般的なコミッショニングの流れを Fig. 1に示す.

コミッショニングの具体的な項目は、治療計画 装置用ビームデータ測定(1~2ヶ月),ビーム モデリング(1ヶ月),ビームデータ登録作業・ 入力値確認(2日),治療計画装置の動作確認・ 各検証作業(1~2ヶ月)などである.その作業 内容は煩雑で膨大であり、さらに導入したばかり の不慣れなリニアックや測定機器を用いての作業 となるため、ミスを避けるためにも慎重に十分な 時間を掛けて行う必要がある.しかし、臨床ニー ズや病院の経営的側面から、できるだけ短期間で

Fig.1 コミッショニングの流れ(従来)

かつ安全にリニアックを立ち上げることが望まれる.

コミッショニングを短期間で行う方法の一 つに、ゴールデンビームデータ(Golden Beam Data:以下、GBD)を用いる方法がある.GBD は、ベンダーが提供しているどのユーザーでも 臨床使用できるビームデータであり、GBDをリ ニアックにビームデータとして登録することで、 ビームデータ測定の時間を大幅に短縮することが できる.結果として、コミッショニング期間の短 縮も期待できる.

当院では、GBD を用いてリニアックの新規導

日数	A M	Р М	備考
1	取訳、水	槽セットアップ	
2	X M PDD (open&FFF)	X M PDD(open&FFF)	
3	X MR PDD (wedge)	X MR PDD(wedge)	6
4	X BOCR (open)	X MR OCR (open)	
5	X MOCR (FFF)	X MR OCR (FFF)	
	X BOCR (wedge)	X MR OCR(wedge)	
7	X BROCR (wedge)	X MR OCR(wedge)	
8	X 線 OCR 大照射野	X線 OCR 大照射野	水槽移動
	X 線 OCR 大照射野	X線 OCR 大照射野·対角線	
10	SSD80-120 Wedge PDD	SSD80-120 Wedge PDD	水槽移動
11	X M Output(open)	X M Output(open)	
12	X IR Output(open)	X M Output(open)	
13	X M Output(FFF)	X M Output(FFF)	
14	X IR Output(FFF)	X M Output(FFF)	
15	X IR Output (wedge 15)	X MR Output(wedge15)	1
16	X IR Output(wedge15)	X M Output(wedge15)	
17	X IB Output/wedge30)	X M Output(wedge30)	
18	X MR Output/wedge30)	X MR Output(wedge30)	
19	X IR Output/wedge45)	X M Output/wedge45)	
20	X M Output(wedge45)	X M Output(wedge45)	
21	X M Output(wedge60)	X M Output(wedge60)	
22	X M Output(wedge60)	X M Output(wedge60)	
23	MU 校正 (open&FFF⋀)	MU 校正 (open&FFF⋀)	
24	SSD80-120 X 總(各 wedge)	SSD80-120 X 歸(各 wedge)	
25	SSD80-120 X 歸(各 wedge)	SSD80-120 X 緣(各 wedge)	
28	X線MLC係数など(open&FFF)	X線MLC係数など(open&FFF)	
27	電子線 PDO	電子線 OCR	
28	電子線OCR	電子線 絶対線量	

Fig.2 ビームデータ測定項目(推奨)

入を行った.当院で実際に測定したビームデータ (Measured Beam Data:以下,MBD)と比較し, GBD の正確性や有用性について検討したので報 告する.

2. 方 法

2-1 GBD と MBD の比較検証

GBD を使用するにあたって,GBD が実際に MBD と一致していることが確認できなければ 使用することはできない.文献より,GBD と TrueBeam のビームデータは1%以内の誤差で一 致することが報告されている²⁾⁴⁾.当院でもこれ らの報告を参考に,GBD とMBD の検証を行う こととした.ベンダーが推奨している,測定すべ きビームデータ項目を Fig.2 に示す.

測定すべきビームデータは多岐に渡り,大き くスキャンデータとノンスキャンデータに分け られる.スキャンデータとして深部線量百分率 (Percent Depth Dose:以下,PDD)や軸外線量 比 (Off Center Ratio:以下,OCR),対角軸外 線量比 (Off Center Diagonal Ratio:OCD)など が,ノンスキャンデータとして出力係数 (Output factor:以下,OPF)やウェッジ係数 (Wedge factor)などがある.これらのデータから GBD として公開されている PDD と OCR, OPF の一 部の項目を抜粋して,GBD と MBD の比較を行 Table 1 TrueBeam における GBD の測定条件

	X 線				
エネルギー (MV)	4, 6, 10, 6FFF, 10FFF				
照射野 (cm ²)	3x3, 4x4, 6x6, 8x8, 10x10, 20x20, 30x30, 40x40				
PDD	SSD = 100cm				
OCR	SSD = 100cm Depth = dmax, 5, 10, 20, 30cm				
OCD	$SSD = 100 cm, 40 x 40 cm^{2}$ Depth = dmax, 5, 10, 20, 30 cm				
OPF	SSD = 95cm, $Depth = 5 cm$				

うための, 簡易測定を行った.

2-2 使用機器

リニアックは TrueBeam, 治療計画装置は Varian Medical Systems 社 製 Eclipse ver.15.6 (以下, Eclipse)を用いた.GBDとの比較に はX線を用いた.使用エネルギーは平坦ビーム (Flattening Filtered beam:以下,FF)が4, 6,10メガボルト(以下,MV),非平坦ビーム (Flattening Filter Free beam:以下,FFF)が6, 10MV である.ビームデータ測定には3D水ファ ントムとして SMARTSCAN (IBA Dosimetry 社 製)を使用し、電離箱線量計は CC13 線量計(IBA Dosimetry 社製)を用いた.測定条件は GBD の 測定条件に準じた³⁾(Table 1). Eclipse の線量計 算アルゴリズムは AcurosXB ver.15.6を用いた.

2-3 スキャンデータ (PDD と OCR)の検証 測定項目は、PDD 及び OCR で X 線全エネル ギー(5種類)を使用、照射野サイズは4x4、 10x10、20x20、30x30cm²の4種類、OCR にお ける測定深(以下, Depth)は最大線量深(以下, dmax)と5 cm、10cm、20cm の4種類とした. 誤差の算出範囲は、PDD は dmax より深い 位置で、OCR は平坦領域である照射野サイズの 80%領域内で算出した. PDD,OCR ともに測定間 隔は1 mm 間隔とした. 誤差の計算には、以下の Local Dose Differrence(%)の計算式(1)を用 いた.

 $(D_m - D_r) / D_r x 100$ (%) · · · · · · · · (1) $D_m : MBD の線量$ $D_r : D_m と同一位置にある GBD の線量$

Table 2 GBD と MBD の PDD の誤差

照射野/エネルギー	4MV	6MV	10MV	6MV-FFF	10MV-FFF	誤差平均
$4x4cm^2$	0.38%	0.34%	0.11%	0.47%	0.28%	0.32%
$10 \times 10 \text{cm}^2$	0.25%	0.13%	0.15%	0.73%	0.43%	0.34%
$20 \mathrm{x} 20 \mathrm{cm}^2$	0.31%	0.14%	0.40%	0.45%	0.09%	0.28%
$30x30cm^2$	0.55%	0.61%	0.17%	0.70%	0.23%	0.45%
誤差平均	0.37%	0.31%	0.21%	0.59%	0.26%	0.35%

Fig.3 GBD と MBD の PDD の比較(例:10MV と 10MV-FFF)

2-4 ノンスキャンデータ (OPF) の検証

GBD の OPF を Eclipse に入力し, ビームモデ リングを行った. GBD における OPF のデータ は,線源表面間距離 (Source Surface Distance: SSD) が 95cm, Depth が 5 cm の 値 で ある. GBD の OPF と, Eclipse によって計算された線 量より算出した OPF (以下, Eclipse 計算値)を 比較した. OPF の計算式を計算式 (2) に示す. 照射野サイズは5x5, 10x10, 20x20, 30x30cm² の4種類とした.

OPF = 各照射野サイズにおける吸収線量 /10x10cm²の照射野サイズにおける吸 収線量・・・・・・・・・・(2)

3. 結果

3-1 スキャンデータの比較

GBD と MBD の PDD の比較結果を, Table 2 と, Fig. 3 に示す. PDD は各エネルギーでそれ ぞれ平均誤差が, 4 MV: 0.37%, 6 MV: 0.31%, 10 MV: 0.21%, 6 MV-FFF: 0.59%, 10 MV-FFF: 0.26%であり,最大誤差は6 MV-FFF の照射野サ イズ 10 X10 cm² における 0.73%であった. 全ての 検証条件(X線エネルギー5種類,照射野サイズ 4種類)の平均誤差は 0.35%であった. GBD と MBD の OCR の比較結果を, Table 3 と, Fig. 4 に示す. OCR は, 各 Depth でそれぞ れ平均誤差が, Depth = dmax: 0.16%, Depth = 5 cm: 0.17%, Depth = 10 cm: 0.16%, Depth = 20 cm: 0.16% であり, 最大誤差は 10 MV-FFF の照射野サイズ 30 X30 cm², Depth = 20 cm にお ける 0.38% であった (Table 3 (d)). 全ての検 証条件 (X 線エネルギー5種類, 照射野サイズ 4 種類, Depth 4 種類) の平均誤差は 0.16% であっ た.

3-2 ノンスキャンデータの比較

OPF の比較結果を Table 4, Fig. 5 に示す. GBD と Eclipse 計算値の誤差は, 平均が 0.00%と 良好に一致していた.

4.考察

我々は、当院に新規導入されたリニアック (TrueBeam)のコミッショニングにおいて、 ビームデータ測定を行う代わりに GBD をビー ムデータとして用いてコミッショニングを試み た.GBD と MBD の比較において、測定誤差は PDD が平均 0.35% (最大 0.73%), OCR は 0.16% (最大 0.38%)であった.同様に、OPF も平均が

Table 3 GBD と MBD の OCR の誤差

(;	a) (Depth	= dmax))
----	------	-------	---------	---

_								
	照射野/エネルギー	4MV	6MV	10MV	6MV-FFF	10MV-FFF	誤差平均	
	$4x4cm^2$	0.23%	0.10%	0.17%	0.10%	0.26%	0.17%	
	$10 \mathrm{x} 10 \mathrm{cm}^2$	0.22%	0.14%	0.11%	0.09%	0.09%	0.13%	
	$20x20cm^2$	0.19%	0.07%	0.14%	0.15%	0.14%	0.14%	
	$30x30cm^2$	0.17%	0.11%	0.20%	0.16%	0.28%	0.18%	
	誤差平均	0.20%	0.11%	0.16%	0.13%	0.19%	0.16%	

(b) (Depth = 5 cm)

照射野/エネルギー	$4 \mathrm{MV}$	6MV	10MV	6MV-FFF	10MV-FFF	誤差平均
$4x4cm^{2}$	0.21%	0.10%	0.26%	0.11%	0.22%	0.18%
$10 \mathrm{x} 10 \mathrm{cm}^2$	0.18%	0.08%	0.10%	0.06%	0.17%	0.12%
$20 \mathrm{x} 20 \mathrm{cm}^2$	0.17%	0.14%	0.14%	0.11%	0.14%	0.14%
$30x30cm^2$	0.14%	0.11%	0.26%	0.26%	0.32%	0.22%
誤差平均	0.18%	0.11%	0.19%	0.14%	0.21%	0.17%

(c) (Depth = 10cm)

照射野/エネル	イギー 4MV	6MV	10MV	6MV-FFF	10MV-FFF	誤差平均	
4x4cm ²	0.12%	0.13%	0.18%	0.06%	0.18%	0.13%	
$10 \mathrm{x} 10 \mathrm{cm}^2$	0.21%	0.12%	0.19%	0.13%	0.07%	0.14%	
$20x20cm^2$	0.12%	0.10%	0.14%	0.10%	0.24%	0.14%	
$30x30cm^2$	0.31%	0.16%	0.17%	0.28%	0.23%	0.23%	
誤差平均	0.19%	0.13%	0.17%	0.14%	0.18%	0.16%	

(d) (Depth = 20cm)

照射野/エネルギー	4MV	6MV	10MV	6MV-FFF	10MV-FFF	誤差平均
$4x4cm^{2}$	0.05%	0.09%	0.11%	0.07%	0.12%	0.09%
$10 \mathrm{x} 10 \mathrm{cm}^2$	0.28%	0.12%	0.12%	0.08%	0.07%	0.13%
$20 \mathrm{x} 20 \mathrm{cm}^2$	0.25%	0.14%	0.19%	0.28%	0.14%	0.20%
$30x30cm^2$	0.17%	0.24%	0.19%	0.14%	0.38%	0.22%
誤差平均	0.19%	0.15%	0.15%	0.14%	0.18%	0.16%

Fig.4 GBDとMBDのOCRの比較(例:10MVと10MV-FFF)

Table 4 GBD と Eclipse 計算値の OPF の誤差

(a) (4 MV)

照射野	GBD	Eclipse	誤差
$5 \mathrm{x5 cm}^2$	0.92	0.92	0.00%
$10 \mathrm{x} 10 \mathrm{cm}^2$	1.00	1.00	0.00%
$20 \mathrm{x} 20 \mathrm{cm}^2$	1.08	1.08	0.00%
30x30cm ²	1.12	1.12	0.00%

(c) (10MV)

照射野	GBD	Eclipse	誤差
5x5cm ²	0.94	0.94	0.00%
$10 \mathrm{x} 10 \mathrm{cm}^2$	1.00	1.00	0.00%
$20 \mathrm{x} 20 \mathrm{cm}^2$	1.06	1.06	0.00%
$30x30cm^2$	1.09	1.09	0.00%

(e) (10MV-FFF)

照射野	GBD	Eclipse	誤差
$5 \mathrm{x5 cm}^2$	0.96	0.96	0.00%
$10 \mathrm{x} 10 \mathrm{cm}^2$	1.00	1.00	0.00%
20x20cm ²	1.03	1.03	0.00%
$30 \mathrm{x} 30 \mathrm{cm}^2$	1.04	1.04	0.00%

Fig.5 GBDとEclipse計算値のOPFの比較(例: 10MV)

0.00% (最大 0.09%) と良好に一致していた.先 行研究の報告において,広木らは X 線の GBD と MBD の誤差が PDD, OCR ともに 1 % 以内で あったと報告している²⁾. また田中らは,国内で 使用されている 17 施設 21 台分の TrueBeam を 対象とした多施設調査において, $3 \times 3 \text{ cm}^2$ の小 照射野を除き,PDD や OCR (平坦領域),OPF のばらつきが 1.0%未満であり,その平均データ と GBD の誤差も 1 %未満であったと報告してい る⁴⁾.本研究の結果も同様に,GBD と MBD の測 定誤差は PDD,OCR,OPF 全て 1 %未満であっ

(b) (6MV)

照射野	GBD	Eclipse	誤差
5x5cm ²	0.93	0.93	0.00%
$10 \mathrm{x} 10 \mathrm{cm}^2$	1.00	1.00	0.00%
$20 \mathrm{x} 20 \mathrm{cm}^2$	1.07	1.07	0.00%
$30x30cm^2$	1.10	1.10	0.00%

(d) (6 MV-FFF)

照射野	GBD	Eclipse	誤差
5x5cm ²	0.94	0.94	0.00%
$10 \times 10 \text{cm}^2$	1.00	1.00	0.00%
$20x20cm^2$	1.05	1.05	0.00%
$30x30cm^2$	1.07	1.07	0.00%

Fig.6 コミッショニングの流れ(当院)

た.以上の結果より,我々は当院のリニアックの ビームデータとして GBD を使用することは問題 ないと判断した.

簡易測定の項目以外にも、GBDとして公開されていない、測定が必須のビームデータ項目の測定や、確認目的で測定を行った項目も存在するが、それらを含めても、通常であれば1~2ヶ月程度必要なビームデータ測定が、GBDを使用することで2週間ほどで完了することができた. 当院で行ったコミッショニングの流れ・期間をFig.6に示す.ビームデータ測定の時間を大幅に短縮することができ、短縮した時間でスタッフの研修を行ったり、IMRT(Intensity Modulated Radiation Therapy:強度変調放射線治療)、TBI (Total Body Irradiation:全身照射)などの特殊治療の検証に時間を掛けることができた.

全く簡易測定や検証を行わずに GBD を用いて リニアックのコミッショニングを行うことは,自 施設のリニアックの特性を知る上でも避けるべ きであるが,GBD と自施設の MBD が一致して いることを確認した上で GBD を使用することに よって,ビームデータ測定における人為的ミスを 避け,安全かつ短期間でリニアックの立ち上げを 行うことができると言える.

5. おわりに

新規リニアック(TrueBeam)の更新におい て,GBDを使用してコミッショニングを行った. GBDと当院のMBDを比較検討するために簡易 測定を行った結果は,PDD,OCR,OPFで測定 誤差は1%以内であった.GBDを使用すること でコミッショニングにおけるビームデータ測定期 間の短縮ができ,安全かつ短期間でリニアックを 更新・臨床導入することができた.

●文献

- 2)広木智之,藤田幸男,前平祥太,他.:ゴールデ ンビームデータを用いた効率的な治療計画装置コ ミッショニング.日本放射線技術学会誌 Vol.75 (8):725-735, 2019.
- Varian Medical Systems. TrueBeam Representative Beam Data for Eclipse. 2015.
- 4) Tanaka Y, Mizuno H, Akino Y, et al.: Do the representative beam data for TrueBeam[™] linear accelerators represent average data? J Appl Clin Med Phys 20 (2): 51–62, 2019.